Package: STPGA 5.2.1
STPGA: Selection of Training Populations by Genetic Algorithm
Combining Predictive Analytics and Experimental Design to Optimize Results. To be utilized to select a test data calibrated training population in high dimensional prediction problems and assumes that the explanatory variables are observed for all of the individuals. Once a "good" training set is identified, the response variable can be obtained only for this set to build a model for predicting the response in the test set. The algorithms in the package can be tweaked to solve some other subset selection problems.
Authors:
STPGA_5.2.1.tar.gz
STPGA_5.2.1.zip(r-4.5)STPGA_5.2.1.zip(r-4.4)STPGA_5.2.1.zip(r-4.3)
STPGA_5.2.1.tgz(r-4.4-any)STPGA_5.2.1.tgz(r-4.3-any)
STPGA_5.2.1.tar.gz(r-4.5-noble)STPGA_5.2.1.tar.gz(r-4.4-noble)
STPGA_5.2.1.tgz(r-4.4-emscripten)STPGA_5.2.1.tgz(r-4.3-emscripten)
STPGA.pdf |STPGA.html✨
STPGA/json (API)
# Install 'STPGA' in R: |
install.packages('STPGA', repos = c('https://denizakdemir.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 6 years agofrom:3bcb93df1f. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 02 2024 |
R-4.5-win | OK | Nov 02 2024 |
R-4.5-linux | OK | Nov 02 2024 |
R-4.4-win | OK | Nov 02 2024 |
R-4.4-mac | OK | Nov 02 2024 |
R-4.3-win | OK | Nov 02 2024 |
R-4.3-mac | OK | Nov 02 2024 |
Exports:Amat.piecesAOPTCDMAXCDMAX0CDMAX2CDMEANCDMEAN0CDMEAN2CDMEANMMdist_to_testdist_to_test2disttoidealDOPTEOPTGAUSSMEANMMGenAlgForSubsetSelectionGenAlgForSubsetSelectionMOGenAlgForSubsetSelectionMONoTestGenAlgForSubsetSelectionNoTestGOPTPEVGOPTPEV2neg_dist_in_trainneg_dist_in_train2PEVMAXPEVMAX0PEVMAX2PEVMEANPEVMEAN0PEVMEAN2PEVMEANMM
Dependencies:AlgDesignclicolorspaceemoafarvergluelabelinglifecyclemunsellR6RColorBrewerrlangscalesscatterplot3dviridisLite